Constraints on local primordial non-Gaussianity using a neural network classifier

Biuse Casaponsa Galí Observational cosmology and instrumentation group IFCA, Santander

Outline

Constraints on local non-Gaussianity using a neural network classifier

Casaponsa B., Bridges M., Curto A., Barreiro R.B., Hobson M.P., Martínez-González E.

2011, MNRAS, Vol 416, pp 457-464 arxiv:1105.6116

- Introduction
 - local fnl
 - aim of the work
- Neural networks
 - General comments
 - Neural network classifier
- Results

Local non-Gaussianity

Gaussianity

Standard inflationary model \mapsto Gaussian distribution of the anisotropies

Non-Gaussianity

Any deviation from normal probability distribution. Different processes can show different deviations.

local fnl parameter

$$\phi = \phi_L + f_{NL} \left[\phi_L^2 - <\phi_L^2 > \right] \Rightarrow \frac{\Delta T}{T} = F(\phi, f_{NL}).$$

Third order moments, as for example the bispectrum, are linearly dependant to fnl.

$$f_{NL} \propto <(\frac{\Delta T}{T})^3>$$

Local non-Gaussianity

Gaussianity

Standard inflationary model \mapsto Gaussian distribution of the anisotropies

Non-Gaussianity

Any deviation from normal probability distribution. Different processes can show different deviations.

local fnl parameter

$$\phi = \phi_L + f_{NL} \left[\phi_L^2 - < \phi_L^2 > \right] \Rightarrow \frac{\Delta T}{T} = F(\phi, f_{NL}).$$

Third order moments, as for example the bispectrum, are linearly dependant to fnl.

$$f_{NL} \propto < (\frac{\Delta T}{T})^3 >$$

Very weak signal!

Method's efficiency:

- in terms of accuracy = bispectrum (Smith et al. 2009, Komatsu et al.2011, SMHW Curto et al. 2011a,b)
- CPU time (SMHW Curto et al. 2011a,b)

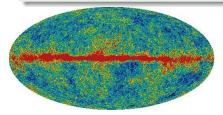
Aim of this work

• We want to show that using neural networks we are able to get equivalent results as the ones obtained through χ^2 minimization, avoiding C estimation and invertion

Estimators

REAL DATA

 f_{NL} estimators get more complicated when including the mask and anisoptropic noise.



The optimal estimator has been proposed by Creminelli et al. (2006) and succesfully computed by Smith et al. (2009) and Komatsu et al. (2011) for WMAP-5year and WMAP-7year data, giving the best constraints until the moment. $-10 < f_{NL} < 74$.

http://map.gsfc.nasa.gov/

$$\hat{f}_{NL} = \frac{1}{N} \sum_{l_i m_i} \left(\langle a_{l_1 m_1} a_{l_2 m_2} a_{l_3 m_3} \rangle_1 C_{l_1 m_1, l_4 m_4}^{-1} C_{l_2 m_2, l_5 m_5}^{-1} C_{l_3 m_3, l_6 m_6}^{-1} a_{l_4 m_4} a_{l_5 m_5} a_{l_6 m_6} \right. \\ \left. - 3 \left\langle a_{l_1 m_1} a_{l_2 m_2} a_{l_3 m_3} \right\rangle_1 C_{l_1 m_1, l_3 m_2}^{-1} C_{l_2 m_2, l_4 m_4}^{-1} a_{l_4 m_4} \right),$$

where N is a normalization factor:

$$N = \sum_{l_i m_i} \langle a_{l_1 m_1} a_{l_2 m_2} a_{l_3 m_3} \rangle_1 \ C_{l_1 m_1, l_4 m_4}^{-1} C_{l_2 m_2, l_5 m_5}^{-1} C_{l_3 m_3, l_6 m_6}^{-1} \langle a_{l_4 m_4} a_{l_5 m_5} a_{l_6 m_6} \rangle_1 \ .$$

SMHW analysis using simulations have also found similar results (Curto et al. 2011) and there is no need of a linear term $-16 < f_{NL} < 76$.

$$\hat{f}_{NL} = \frac{\sum S_{ijk}^{fnl=1} C_{ijk,rst}^{-1} S_{rst}^{obs}}{\sum S_{ijk}^{fnl=1} C_{ijk,rst}^{-1} S_{rst}^{fnl=1}}$$

Where $S \sim w_{l_1 m_1} w_{l_2 m_3} w_{l_3 m_3}$ are third order moments combining different wavelet scales.

These methods are computationally demanding and the covariance matrix and its inverse has to be estimated (large number of simulations, singular matrix).

SMHW analysis using simulations have also found similar results (Curto et al. 2011) and there is no need of a linear term $-16 < f_{NL} < 76$.

$$\hat{f}_{NL} = \frac{\sum S_{ijk}^{fnl=1} C_{ijk,rst}^{-1} S_{rst}^{obs}}{\sum S_{ijk}^{fnl=1} C_{ijk,rst}^{-1} S_{rst}^{fnl=1}}$$

Where $S \sim w_{l_1\,m_1}w_{l_2\,m_3}w_{l_3\,m_3}$ are third order moments combining different wavelet scales.

These methods are computationally demanding and the covariance matrix and its inverse has to be estimated (large number of simulations, singular matrix).

We want to bypass this last step using neural networks.

Neural networks

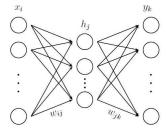


Figure 1. Schematic of a 3-layer feed-forward neural network.

nodes

$$y_k \, = \sum_j w_{kj} \, h_j \, + \, \theta_k \, , \label{eq:yk}$$

where h_{j} is

$$h_j = tanh(\sum_i w_{ji}x_i) + \theta_j$$

$$y_k = \sum_j w_{kj} \left(\tanh(\sum_i w_{ji} x_i) + \theta_j \right) + \theta_k$$

Supervised training for a feedforward network

We train the network with a known set of inputs and outputs, $\mathbf{x^t}$ and $\mathbf{y^t}$. We choose an optimization function (Ex. mse,rmse, χ^2,\dots). The optimization function is only dependent of the network parameters.

$$\chi = \frac{1}{2} \sum_{t,k} (y_k^{(net),t} - y_k^{(t)})^2$$

minimize this function (using conjugates gradient methods, gradient descent method, etc.)

We have used a neural network code with $Q=\alpha S-\chi^2$, where S is the entropy. Following the maximum entropy trajectory to find the optimal solution (MEMSYS, Gull and Skilling 1999). In any case we need to find w_{lm} and $\theta_n\mapsto y_k\sim y_k^{real}$. (Mike Hobson's talk)

Neural Network classifier

$$p_k = \frac{e^{y_k}}{\sum_k e^{y_k}}$$

$$\chi = \sum_{k} p_k \ln p_k^{(net)}$$

Training

- We need to know how many classes we want and what they represent
- Supervised training requires known \vec{x}^t and \vec{p}^t .
- Inputs need to be the characteristic properties of the objects we want to differentiate

Ex. we want to classify apples and oranges.

- we need to have a sample of these two fruits, N apples and oranges.
- we choose the best properties to differenciate them, ex: color, acidity, texture...
- we introduce this values to the network.
 - INPUTS → fruit's properties
 - OUTPUTS → probability each class (ex. p=(1,0))

After the training using N fruits we will get the weights and biases that should be able to generalize the problem. We can put the properties of any orange / apple and the network outures will be the probability of belonging to each class.

Neural Network classifier

$$p_k = \frac{e^{y_k}}{\sum_k e^{y_k}}$$

$$\chi = \sum_{k} p_k \ln p_k^{(net)}$$

Training

- We need to know how many classes we want and what they represent
- Supervised training requires known \vec{x}^t and \vec{p}^t .
- Inputs need to be the characteristic properties of the objects we want to differentiate

What we really want to classify are CMB maps in levels of non-Gaussianity.

lacksquare Sample: CMB simulated maps with different values of f_{NL} .

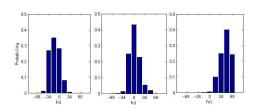
$$a_{lm} = a_{lm}^{(G)} + f_{NL} a_{lm}^{(NG)}$$

(Elsner & Wandelt, http://planck.mpa-garching.mpg.de/cmb/fnl-simulations)

- $\textbf{Q} \quad \textbf{Characteristic properties: Third order moments (cubic statistics of the wavelet coefficients)} \\ S_{jkl} = \sum_{i} \frac{w_{j}w_{k}w_{l}}{N_{m,i}} \mapsto 680 \text{ inputs}$
- Outputs: Different levels of non-Gaussianity. (ex. $-100 < f_{NL} <= -80$ class 0, $-80 < f_{NL} <= -60$ class 1,...) \mapsto 9 classes

After training and testing the network gives the probability of an input vector (statistics of the CMB map) to belong at each class p_i .

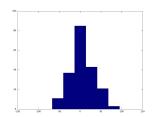
Neural Network classifier



If we do that for 1000 simulations with same fnl, we can compute the bias and dispersion of the estimator \mapsto the efficiency of the method.

We can compute f_{NL} for a given map as:

$$\hat{f}_{NL} = \sum_{i} fnl_{i}^{(c)} \times p_{i}$$



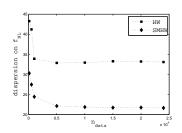
Problems

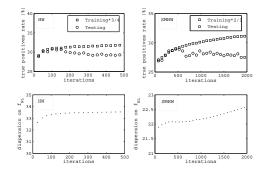
- ullet Working with repeated a_{lm} realizations makes overfitting very likely
- We detect this when the testing and the training set have divergent behaviour.

Results

Stopping at the moment where the overfitting starts

 $True positives rate = \frac{Right classified inputs}{Total of inputs}$





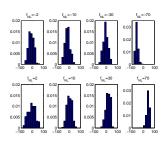
Checking how affects number of inputs to train

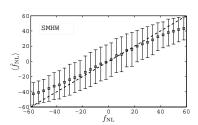
Dispersion computed for $N_{test} = 1000$. $N_{train} = 5000$.

Results

Distribution of \hat{f}_{NL}

No significant bias. Edge problem for large f_{NL} (NN can not give values outside training range)





Results

	\hat{f}_{NLdata}	$\sigma(\hat{f}_{NL})$	$<\hat{f}_{NLgauss}>$	$P_{2,5}$	$P_{97,5}$
SMHW (NN)	19	22	-1	-43	42
SMHW (WLS) Curto et al. 2011b	32	21	0	-42	46
HW (NN)	-12	33	-1	-66	63
HW (WLS) Casaponsa et al. 2011	6	34	1	-68	67

Results obtained with neural networks (NN) and weighted least squares (WLS). \hat{f}_{NLdata} is the best fitting value for V+W WMAP data, $<\hat{f}_{NLgauss}>$ and $\sigma(\hat{f}_{NL})$ are the expected value and the standard deviation for Gaussian simulations. $P_{2,5}$ and $P_{97,5}$ represent the percentile values at 95 % confidence level of \hat{f}_{NL} for Gaussian realizations.

Conclusions

- ullet Neural network estimator of f_{NL} using wavelets coefficients gives same results avoiding the inversion of the covariance matrix.
- Neural networks might be useful in other cases where matrix invertions are involved.
- We have to be careful with overfitting and network architecture.
- Once the network is trained (in this specific case no more than 1 minute) generalized results are immediate. Point sources, assymetries, etc. can be calculated if simulations available.
- Next step bispectrum.

Thanks