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Local non-Gaussianity

Gaussianity

Standard inflationary model 7→ Gaussian distribution of
the anisotropies

Non-Gaussianity

Any deviation from normal probability distribution. Different
processes can show different deviations.

local fnl parameter

φ = φL + fNL

h

φ2
L

− < φ2
L

>
i

⇒
∆T
T

= F (φ, fNL).

Third order moments, as for example the bispectrum, are linearly dependant to fnl. fNL ∝< ( ∆T
T

)3 >
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Very weak signal!

Method’s efficiency:

in terms of accuracy = bispectrum (Smith et al. 2009, Komatsu et al.2011, SMHW Curto et al. 2011a,b)

CPU time (SMHW Curto et al. 2011a,b)

Aim of this work

We want to show that using neural networks we are able to get equivalent results as the ones obtained

through χ2 minimization, avoiding C estimation and invertion
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Estimators

REAL DATA

fNL estimators get more complicated when including the mask and anisoptropic noise.

http://map.gsfc.nasa.gov/

The optimal estimator has been

proposed by Creminelli et al. (2006)

and succesfully computed by Smith et

al. (2009) and Komatsu et al.(2011)

for WMAP-5year and WMAP-7year

data, giving the best constraints until

the moment. −10 < fNL < 74.

f̂NL =
1

N

X
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where N is a normalization factor:
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SMHW analysis using simulations have also found similar results (Curto et al. 2011) and there is

no need of a linear term −16 < fNL < 76.

f̂NL =

P

S
fnl=1
ijk C−1

ijk,rstS
obs
rst

P

S
fnl=1
ijk

C−1
ijk,rst

S
fnl=1
rst

Where S ∼ wl1m1
wl2m3

wl3m3
are third order moments combining different wavelet scales.

These methods are computationally demanding and the covariance matrix and its inverse has to be

estimated (large number of simulations, singular matrix).
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Where S ∼ wl1m1
wl2m3

wl3m3
are third order moments combining different wavelet scales.

These methods are computationally demanding and the covariance matrix and its inverse has to be

estimated (large number of simulations, singular matrix).

We want to bypass this last step using neural networks.
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Neural networks

nodes

yk =
X

j

wkjhj + θk,

where hj is

hj = tanh(
X

i

wjixi) + θj

yk =
X

j

wkj

0

@tanh(
X

i

wjixi) + θj

1

A + θk

Supervised training for a feedforward network

We train the network with a known set of inputs and outputs, xt and yt . We choose an optimization function (Ex. mse,rmse,χ2 ,. . . ) .

The optimization function is only dependent of the network parameters.

χ =
1

2

X

t,k

(y
(net),t
k

− y
(t)
k

)2

minimize this function (using conjugates gradient methods, gradient descent method, etc.)

We have used a neural network code with Q = αS − χ2 , where S is the entropy. Following the maximum entropy trajectory to find the

optimal solution (MEMSYS, Gull and Skilling 1999). In any case we need to find wlm and θn 7→ yk ∼ yreal
k

.(Mike Hobson’s talk)
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Neural Network classifier

pk =
eyk

X

k

eyk
χ =

X

k

pk ln p
(net)
k

Training

We need to know how many classes we want and what they represent

Supervised training requires known ~xt and ~pt .

Inputs need to be the characteristic properties of the objects we want to differentiate

Ex. we want to classify apples and oranges.

1 we need to have a sample of these two fruits, N apples and oranges.

2 we choose the best properties to differenciate them, ex: color, acidity, texture. . .

3 we introduce this values to the network.

INPUTS 7→ fruit’s properties
OUTPUTS 7→ probability each class (ex. p=(1,0))

After the training using N fruits we will get the weights and biases that should be able to generalize the problem.
We can put the properties of any orange / apple and the network ouputs will be the probablility of belonging to
each class.
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Neural Network classifier

pk =
eyk

X

k

eyk
χ =

X

k

pk ln p
(net)
k

Training

We need to know how many classes we want and what they represent

Supervised training requires known ~xt and ~pt .

Inputs need to be the characteristic properties of the objects we want to differentiate

What we really want to classify are CMB maps in levels of non-Gaussianity.

1 Sample: CMB simulated maps with different values of fNL.

alm = a
(G)
lm

+ fNLa
(NG)
lm

(Elsner & Wandelt, http://planck.mpa-garching.mpg.de/cmb/fnl-simulations)

2 Characteristic properties: Third order moments (cubic statistics of the wavelet coefficients)

Sjkl =
X

i

wjwkwl

Npix

7→ 680 inputs

3 Outputs: Different levels of non-Gaussianity. (ex. −100 < fNL <= −80 class 0,
−80 < fNL <= −60 class 1,. . . ) 7→ 9 classes

After training and testing the network gives the probability of an input vector (statistics of the CMB map) to
belong at each class pi .
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Neural Network classifier

If we do that for 1000 simulations with same fnl, we
can compute the bias and dispersion of the
estimator 7→ the efficiency of the method.

We can compute fNL for a given
map as:

f̂NL =
X

i

fnl
(c)
i × pi

Problems

Working with repeated alm realizations makes overfitting very likely

We detect this when the testing and the training set have divergent behaviour.
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Results

Stopping at the moment where the overfitting
starts

True positives rate =
Right classified inputs

Total of inputs

0 0.5 1 1.5 2 2.5

x 10
4

20

25

30

35

40

45

n
data

d
is

p
e

rs
io

n
 o

n
 f

N
L

 

 

HW
SMHW

0 100 200 300 400 500
25

30

35

40

iterations

tr
u

e
 p

o
si

tiv
e

s 
ra

te
 (

%
)

 

 

0 100 200 300 400 500
30

31

32

33

34

35

iterations

d
is

p
e

rs
io

n
 o

n
 f

N
L

0 500 1000 1500 2000
25

30

35

iterations

tr
u

e
 p

o
si

tiv
e

s 
ra

te
 (

%
)

 

 

0 500 1000 1500 2000
21

21.5

22

22.5

23

iterations

d
is

p
e

rs
io

n
 o

n
 f

N
L

Training*3/4

Testing

Training*2/3

Testing

HW

SMHW

SMHW

HW

Checking how affects number of inputs to train

Dispersion computed for Ntest = 1000. Ntrain = 5000.
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Results

Distribution of f̂NL

No significant bias. Edge problem for large fNL (NN can not give values outside
training range)
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Results

f̂NLdata σ(f̂NL) < f̂NLgauss > P2,5 P97,5

SMHW (NN) 19 22 -1 -43 42

SMHW (WLS)
Curto et al. 2011b

32 21 0 -42 46

HW (NN) -12 33 -1 -66 63

HW (WLS)
Casaponsa et al. 2011

6 34 1 -68 67

Results obtained with neural networks (NN) and weighted least squares (WLS). f̂NLdata is the best fitting value for V+W WMAP

data, < f̂NLgauss > and σ(f̂NL) are the expected value and the standard deviation for Gaussian simulations. P2,5 and P97,5

represent the percentile values at 95 % confidence level of f̂NL for Gaussian realizations.
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Conclusions

Neural network estimator of fNL using wavelets coefficients gives same results
avoiding the inversion of the covariance matrix.

Neural networks might be useful in other cases where matrix invertions are
involved.

We have to be careful with overfitting and network architecture.

Once the network is trained (in this specific case no more than 1 minute)
generalized results are immediate. Point sources, assymetries, etc. can be
calculated if simulations available.

Next step bispectrum.
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Thanks
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