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Introduction

Local non-Gaussianity

Non-Gaussianity

Standard inflationary model — Gaussian distribution of Any deviation from normal probability distribution. Different
the anisotropies processes can show different deviations.

local fnl parameter

¢=¢p+FnL [03- <93 >] = BF = F(s. L)
Third order moments, as for example the bispectrum, are linearly dependant to fnl. g << (85)3 >
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Introduction

Local non-Gaussianity

Non-Gaussianity

Standard inflationary model +— Gaussian distribution of Any deviation from normal probability distribution. Different
the anisotropies processes can show different deviations.

local fnl parameter

o=¢p +InL [93— < 93 >| = BF = F(¢, fNL)-
Third order moments, as for example the bispectrum, are linearly dependant to fnl. fNL x< (% )3 >

Very weak signal!

Method's efficiency:
@ in terms of accuracy = bispectrum (Smith et al. 2009, Komatsu et al.2011, SMHW Curto et al. 2011a,b)
@ CPU time (SMHW Curto et al. 2011a,b)

Aim of this work

@ We want to show that using neural networks we are able to get equivalent results as the ones obtained

through X2 minimization, avoiding C estimation and invertion
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Introduction

Estimators

REAL DATA

fn L estimators get more complicated when including the mask and anisoptropic noise.

The optimal estimator has been
proposed by Creminelli et al. (2006)
and succesfully computed by Smith et
al. (2009) and Komatsu et al.(2011)
for WMAP-5year and WMAP-7year
data, giving the best constraints until
the moment. —10 < fnr < 74.

http://map.gsfc.nasa.gov/
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Introduction

SMHW analysis using simulations have also found similar results (Curto et al. 2011) and there is
no need of a linear term —16 < fnr < 76.

Z fnl=1~-1 Sobs
f. _ ijk ijk,rst~rst
NL = frl=1,—1 fri=1
Z Sl]k Cijk,'rstsrst

Where S ~ Wiy my WiymgWigmg are third order moments combining different wavelet scales.

These methods are computationally demanding and the covariance matrix and its inverse has to be
estimated (large number of simulations, singular matrix).

Cargese fnl constraints with neural networks



Introduction

SMHW analysis using simulations have also found similar results (Curto et al. 2011) and there is
no need of a linear term —16 < fnr < 76.

Vf”]_ obs
f Zb”l. ZJA 7€fSrst
NL =
fnl=1 fnl=1
Zszjls 02]}. 7€fSrst

Where S ~ wiym, Wiymg Wigmg are third order moments combining different wavelet scales.

These methods are computationally demanding and the covariance matrix and its inverse has to be
estimated (large number of simulations, singular matrix).

We want to bypass this last step using neural networks.
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Neural networks

Neural networks

vk =2 wijh; + 0k,
J

Q where b ; is

=tanh(}_ wj;z;) + 6;
B

6
O

OF% B0

Figure 1. Schematic of a 3-layer feed-forward neural network.

Y = Zwkj (tanh(z wi;zq) + 0j> + 0
J (3

Supervised training for a feedforward network

We train the network with a known set of inputs and outputs, x% and yt . We choose an optimization function (Ex. mse,rmse,x2,...) .

The optimization function is only dependent of the network parameters.

1 ne t
x = - Z(y,(C Bt _ y,(J))Q
24k

minimize this function (using conjugates gradient methods, gradient descent method, etc.)

We have used a neural network code with Q asS



Neural networks

Neural Network classifier

eVk
— t
pk*Zeyk X:Zpklnp;(vne)
k
k

@ We need to know how many classes we want and what they represent
@ Supervised training requires known Zt and ;3't
@ Inputs need to be the characteristic properties of the objects we want to differentiate

Ex. we want to classify apples and oranges. @
Q we need to have a sample of these two fruits, N apples and oranges.

a we choose the best properties to differenciate them, ex: color, acidity, texture. ..

e we introduce this values to the network.

@ INPUTS + fruit's properties
@ OUTPUTS +— probability each class (ex. p=(1,0))

After the training using N fruits we will get the weights and biases that should be able to generalize the problem.
We can put the properties of any orange / apple and the network ouputs will be the probablility of belonging to

each class.
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Neural networks

Neural Network classifier

eVk

k

Pk
k

@ We need to know how many classes we want and what they represent

@ Supervised training requires known @? and pt.

@ Inputs need to be the characteristic properties of the objects we want to differentiate

What we really want to classify are CMB maps in levels of non-Gaussianity. ‘
Q Sample: CMB simulated maps with different values of fx .

G N
A, = ag,,,f + fNLal(m

(Elsner & Wandelt, http://planck.mpa-garching.mpg.de/cmb/fnl-simulations)

G)

Q Characteristic properties: Third order moments (cubic statistics of the wavelet coefficients)

Wi w g w
JWYkEWl

Sjkl *E:
% “p'im

— 680 inputs

Q Outputs: Different levels of non-Gaussianity. (ex. —100 < fynr <= —80 class 0,
—80 < fnI <= —60class 1,...) — 9 classes

After training and testing the network gives the probability of an input vector (statistics of the CMB map) to
belong at each class p;. J
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Neural networks

Neural Network classifier

We can compute fy, for a given
map as:

fyr = anlﬁc) X pi

Probability

0 0 0
66 -4 0 a4 68 66 -4 0 M 68 68 -34
fnl

[
fnl fnl

If we do that for 1000 simulations with same fnl, we
can compute the bias and dispersion of the
estimator +— the efficiency of the method.

Problems

@ Working with repeated ay,,, realizations makes overfitting very likely

@ We detect this when the testing and the training set have divergent behaviour.
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Application in non-Gaussianity analysis

Results
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Application in non-Gaussianity analysis

Results

Distribution of fnr,

No significant bias. Edge problem for large fnr, (NN can not give values outside
training range)
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Application in non-Gaussianity analysis

Results

fNLdata  0(fNL) < fNLgauss > P25  Pors

SMHW (NN) 19 22 1 43 a2
SMHW (WLS) 32 21 0 42 46
Curto et al. 2011b
HW (NN) 12 33 -1 66 63
HW (WLS) 6 34 1 68 67

Casaponsa et al. 2011

Results obtained with neural networks (NN) and weighted least squares (WLS). fNLdata is the best fitting value for V4+-W WMAP
data, < fNTgauss > and o(fN1,) are the expected value and the standard deviation for Gaussian simulations. Py 5 and Po7, 5

represent the percentile values at 95 % confidence level of fi1, for Gaussian realizations.
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Application in non-Gaussianity analysis

Conclusions

@ Neural network estimator of fx, using wavelets coefficients gives same results
avoiding the inversion of the covariance matrix.

@ Neural networks might be useful in other cases where matrix invertions are
involved.

@ We have to be careful with overfitting and network architecture.

@ Once the network is trained (in this specific case no more than 1 minute)
generalized results are immediate. Point sources, assymetries, etc. can be
calculated if simulations available.

@ Next step bispectrum.
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Application in non-Gaussianity analysis

Thanks
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