MAP-based sparse detection strategies.
Application to the hyperspectral data of the MUSE instrument.

Silvia Paris, David Mary, André Ferrari

Lagrange Laboratory, University of Nice-Sophia Antipolis
{silvia.paris, david.mary, andre.ferrari}@unice.fr

ADA 7, Cargèse
15 May 2012
We consider two detection tests adapted to sparse vector parameters:

- Simple introductory model;
- More realistic model using a redundant dictionary.

Application to detection of specific features in MUSE hyperspectral data.

Contributions:

- The proposed tests are more efficient than the classical ones (GLR).
- Detection strategy exploiting the spatial dependencies between the spectra in MUSE hyperspectral data.
- Analysis of the resulting global False Alarm (FA) rate, through the use of FA-maps.
We consider two detection tests adapted to sparse vector parameters:

- Simple introductory model;
- More realistic model using a redundant dictionary.

Application to detection of specific features in MUSE hyperspectral data.

Contributions:

- The proposed tests are more efficient than the classical ones (GLR).
- Detection strategy exploiting the spatial dependencies between the spectra in MUSE hyperspectral data.
- Analysis of the resulting global False Alarm (FA) rate, through the use of FA-maps.
Considered Tests

- **General Detection Test**: $T(x: data) \overset{H_1}{\geq} \gamma_{H_0}$

- **Considered Tests**:

 Posterior Density Ratio 1:

 $$PDR(x) = \frac{\max p(\theta|x)}{p(0|x)}$$

 Likelihood Ratio using $\hat{\theta}|H_1 = \hat{\theta}_{MAP}$:

 $$LR_{MAP}(x) = \frac{p(x|\hat{\theta}_{MAP})}{p(x|0)}$$

 Generalized Likelihood Ratio:

 $$GLR(x) = \frac{\max p(x|\theta)}{p(x|0)}$$

 PDR and LR_{MAP} tests should favor sparsity thanks to the MAP.

Concluded Tests

- **General Detection Test**: \(T(x: data) \geq H_1 \gamma \)

- **Considered Tests**:

 - **Posterior Density Ratio**\(^1\):
 \[
 PDR(x) = \frac{\max p(\theta|x)}{p(0|x)}
 \]

 - **Likelihood Ratio using \(\hat{\theta}|\mathcal{H}_1 = \hat{\theta}_{\text{MAP}} \)**:
 \[
 LRMAP(x) = \frac{p(x|\hat{\theta}_{\text{MAP}})}{p(x|0)}
 \]

 - **Generalized Likelihood Ratio**:
 \[
 GLR(x) = \frac{\max p(x|\theta)}{p(x|0)}
 \]

 PDR and LRMAP tests should favor sparsity thanks to the MAP.

Considered Tests

- **General Detection Test**: \(T(x: data) \overset{H_1}{\geq} \gamma \)

- **Considered Tests**:

 - **Posterior Density Ratio** \(^1\):
 \[
PDR(x) = \frac{\max p(\theta | x)}{p(0 | x)}
 \]

 - **Likelihood Ratio using \(\hat{\theta} | H_1 = \hat{\theta}_{MAP} \)**:
 \[
 LRMAP(x) = \frac{p(x | \hat{\theta}_{MAP})}{p(x | 0)}
 \]

 - **Generalized Likelihood Ratio**:
 \[
 GLR(x) = \frac{\max p(x | \theta)}{p(x | 0)}
 \]

PDR and LRMAP tests should favor sparsity thanks to the MAP.

Considered Tests

- **General Detection Test**: $T(x: \text{data}) \geq H_1 \gamma$

- **Considered Tests**:

 - **Posterior Density Ratio**\(^1\):

 \[
 PDR(x) = \frac{\max p(\theta|x)}{p(0|x)}
 \]

 - **Likelihood Ratio using $\hat{\theta}|\mathcal{H}_1 = \hat{\theta}_{\text{MAP}}$**:

 \[
 LRMAP(x) = \frac{p(x|\hat{\theta}_{\text{MAP}})}{p(x|0)}
 \]

 - **Generalized Likelihood Ratio**:

 \[
 GLR(x) = \frac{\max p(x|\theta)}{p(x|0)}
 \]

 PDR and LRMAP tests should favor sparsity thanks to the MAP.

Simple introductory model

Hypothesis Test:
\[
\begin{cases}
\mathcal{H}_0 : x = \epsilon, & \epsilon \sim \mathcal{N}(0, \Sigma) \\
\mathcal{H}_1 : x = \theta + \epsilon
\end{cases}
\]

Test Statistics:

\[
T_{LRMAP}(x) = \sum_{i=1}^{N} \left(\frac{x_i^2}{\sigma_i^2} - \eta^2 \right) I\left(|x_i|/\sigma_i > \eta \right)
\]

\[
T_{PDR}(x) = \sum_{i=1}^{N} \left(|x_i|/\sigma_i - \eta \right)^2 I\left(|x_i|/\sigma_i > \eta \right)
\]

- \(\theta \) unknown, deterministic and sparse;
- \(\Sigma = \text{diag}(\sigma_1^2, \cdots, \sigma_N^2) \).
- Laplacian prior: \(\pi(\theta) = \prod_i \frac{1}{2\lambda_i} e^{-|\theta_i|/\lambda_i} \);
- \(I(\cdot) \) : Indicator Function;
- Equal per component threshold \(\eta \ \forall x_i \);
- \(T(x, \eta) > \gamma : P_{FA} \) and \(P_{DET} \) depend on both the \(\eta \) and \(\gamma \) thresholds.
- \(T_{LRMAP}|_{\mathcal{H}_0} : \) sum of \(N \) truncated \(\chi^2_1 \) translated by \(\eta \) with probability mass in 0.
- Expression of \(P_{FA} \) under 'rough' Gaussian approximation.
Simple introductory model

Hypothesis Test:

\[
\begin{cases}
\mathcal{H}_0 : x = \epsilon, & \epsilon \sim \mathcal{N}(0, \Sigma) \\
\mathcal{H}_1 : x = \theta + \epsilon
\end{cases}
\]

Test Statistics:

\[
T_{LRMAP}(x) = \sum_{i=1}^{N} \left(\frac{x_i^2}{\sigma_i^2} - \eta^2 \right) I\left(\frac{|x_i|}{\sigma_i} > \eta \right)
\]

\[
T_{PDR}(x) = \sum_{i=1}^{N} \left(\frac{|x_i|}{\sigma_i} - \eta \right)^2 I\left(\frac{|x_i|}{\sigma_i} > \eta \right)
\]

- \(\theta \) unknown, deterministic and sparse;
- \(\Sigma = \text{diag}(\sigma_1^2, \cdots, \sigma_N^2) \).

- Laplacian prior: \(\pi(\theta) = \prod_i \frac{1}{2\lambda_i} e^{-\frac{|\theta_i|}{\lambda_i}} \);
- \(I(\cdot) \): Indicator Function;
- Equal per component threshold \(\eta \ \forall x_i \);
- \(T(x, \eta) > \gamma : P_{FA} \) and \(P_{DET} \) depend on both the \(\eta \) and \(\gamma \) thresholds.

- \(T_{LRMAP|\mathcal{H}_0} \): sum of \(N \) truncated \(\chi^2_1 \) translated by \(\eta \) with probability mass in 0.
- Expression of \(P_{FA} \) under 'rough' Gaussian approximation.
Simple introductory model

Hypothesis Test:

\[
\begin{align*}
\mathcal{H}_0 : x &= \epsilon, \quad \epsilon \sim \mathcal{N}(0, \Sigma) \\
\mathcal{H}_1 : x &= \theta + \epsilon
\end{align*}
\]

- \(\theta \) unknown, deterministic and sparse;
- \(\Sigma = \text{diag}(\sigma_1^2, \cdots, \sigma_N^2) \).

Test Statistics:

- Laplacian prior: \(\pi(\theta) = \prod_i \frac{1}{2\lambda_i} e^{-\frac{|\theta_i|}{\lambda_i}} \);
- \(I(\cdot) \): Indicator Function;
- Equal per component threshold \(\eta \ \forall x_i \);
- \(T(x, \eta) > \gamma: P_{FA} \) and \(P_{DET} \) depend on both the \(\eta \) and \(\gamma \) thresholds.
- \(T_{LRMAP} | \mathcal{H}_0 \): sum of \(N \) truncated \(\chi^2_1 \) translated by \(\eta \) with probability mass in 0.
- Expression of \(P_{FA} \) under 'rough' Gaussian approximation.

Expression of \(P_{FA} \) under 'rough' Gaussian approximation.
Comparative Analysis : PDR vs LRMAP

- Performances of the tests varying the η and γ thresholds:

 \begin{itemize}
 \item $\eta = 0.05$
 \begin{itemize}
 \item PDR \simeq LRMAP
 \end{itemize}
 \item $\eta = 1$
 \begin{itemize}
 \item PDR $> \text{LRMAP}$
 \end{itemize}
 \item $\eta = 3.3$
 \begin{itemize}
 \item PDR $< \text{LRMAP}$
 \end{itemize}
 \end{itemize}

- PDR (red) and LRMAP (blue) ROC curves compared to the GLR’s one (green).
 - PDR and LRMAP tests outperform the GLR;
 - PDR and LRMAP performances can be inverted.
To overcome the problem of the PDR and LRMAP tests parameter dependency, we set $\gamma = 0$.

In this case:

- the tests depend only on η that fixes the $P_{FA} \triangleq P_{FA_0}$:

$$P_{FA_0} = Pr(T(x) > 0|\mathcal{H}_0) = 1 - (2\Phi(\eta) - 1)^N,$$

with $\Phi(\cdot)$: cumulative distribution function of a standard normal distribution;

- the two tests $T(x) > 0$ are the same since both test statistics are non zero if at least one component is above the threshold η.

- We refer to this unique test as the PDR/LRMAP test.
Setting $\gamma = 0$

To overcome the problem of the PDR and LRMAP tests parameter dependency, we set $\gamma = 0$.

In this case:

- the tests depend only on η that fixes the $P_{FA} \triangleq P_{FA_0}$:

$$P_{FA_0} = Pr(T(x) > 0|\mathcal{H}_0) = 1 - (2\Phi(\eta) - 1)^N,$$

with $\Phi(\cdot)$: cumulative distribution function of a standard normal distribution;

- the two tests $T(x) > 0$ are the same since both test statistics are non-zero if at least one component is above the threshold η.

We refer to this unique test as the PDR/LRMAP test.
To overcome the problem of the PDR and LRMAP tests parameter dependency, we set \(\gamma = 0 \).

In this case:

- the tests depend only on \(\eta \) that fixes the \(P_{FA} \triangleq P_{FA_0} \):

\[
P_{FA_0} = Pr(T(x) > 0|\mathcal{H}_0) = 1 - (2\Phi(\eta) - 1)^N,
\]

with \(\Phi(\cdot) \) : cumulative distribution function of a standard normal distribution;

- the two tests \(T(x) > 0 \) are the same since both test statistics are non zero if at least one component is above the threshold \(\eta \).

- We refer to this unique test as the PDR/LRMAP test.
Hypothesis Test:

\[
\begin{align*}
\mathcal{H}_0 : x &= w, \quad w \sim \mathcal{N}(0, I) \\
\mathcal{H}_1 : x &= D\theta + w
\end{align*}
\]

- **D**: Normalized highly redundant dictionary ($N \times L$ with $L \gg N$);

Test Statistics

- $T_{GLR} = \|x\|^2$;
- $T_{PDR}(x, \eta) = \frac{1}{2} \hat{x}_{MAP}^t \hat{x}_{MAP}$;
- $T_{LRMAP}(x, \eta) = \eta \|\hat{\theta}_{MAP}\|_1 + \frac{1}{2} \hat{x}_{MAP}^t \hat{x}_{MAP}$.

False Alarm rate for PDR/LRMAP test

$P_{FA_0} = Pr(T > 0 | \mathcal{H}_0) = Pr(\max_i(||D_i^t x|| > \eta | \mathcal{H}_0)$

- The GLR reduces to an *Energy Detector*;
- $\hat{x}_{MAP} = D\hat{\theta}_{MAP}$;

PDR and LRMAP are η and γ dependent.

- Simplification: $\gamma = 0 \Rightarrow P_{FA} = P_{FA_0}(\eta)$.

→ Computationally simple (and efficient) for massive data
Hypothesis Test:
\[
\begin{align*}
\mathcal{H}_0 : & \; x = w, \quad w \sim \mathcal{N}(0, I) \\
\mathcal{H}_1 : & \; x = D\theta + w
\end{align*}
\]

Test Statistics

- **$T_{GLR} = \|x\|^2$**;

- **$T_{PDR}(x, \eta) = \frac{1}{2} \hat{x}_{MAP}^t \hat{x}_{MAP}$**;

- **$T_{LRMAP}(x, \eta) = \eta \left\| \hat{\theta}_{MAP} \right\|_1 + \frac{1}{2} \hat{x}_{MAP}^t \hat{x}_{MAP}$**.

- The GLR reduces to an *Energy Detector*;

- $\hat{x}_{MAP} = D\hat{\theta}_{MAP}$;

PDR and LRMAP are η and γ dependent.
- Simplification: $\gamma = 0 \Rightarrow P_{FA} = P_{FA_0}(\eta)$.

False Alarm rate for PDR/LRMAP test

$P_{FA_0} = Pr(T > 0 | \mathcal{H}_0) = Pr(\max_i(|D_i^t x|) > \eta | \mathcal{H}_0)$

\rightarrow Computationally simple (and efficient) for massive data
More realistic model: Sparsity in a redundant dictionary

Hypothesis Test:

\[
\begin{align*}
\mathcal{H}_0 & : x = w, \quad w \sim \mathcal{N}(0, I) \\
\mathcal{H}_1 & : x = D\theta + w
\end{align*}
\]

Test Statistics

- \(T_{GLR} = \|x\|^2 \);
- \(T_{PDR}(x, \eta) = \frac{1}{2} \hat{x}_{MAP}^t \hat{x}_{MAP} \);
- \(T_{LRMAP}(x, \eta) = \eta \left\| \hat{\theta}_{MAP} \right\|_1 + \frac{1}{2} \hat{x}_{MAP}^t \hat{x}_{MAP} \).

False Alarm rate for PDR/LRMAP test

\[
P_{FA_0} = Pr(T > 0 | \mathcal{H}_0) = Pr(\max_i(|D_i^t x|) > \eta | \mathcal{H}_0)
\]

- The GLR reduces to an Energy Detector;
- \(\hat{x}_{MAP} = D\hat{\theta}_{MAP} \);

PDR and LRMAP are \(\eta \) and \(\gamma \) dependent.

- Simplification: \(\gamma = 0 \Rightarrow P_{FA} = P_{FA_0}(\eta) \).

\(\rightarrow \) Computationally simple (and efficient) for massive data.
Multi Unit Spectroscopic Explorer

Based on the **Integral Field Spectroscopy** concept.

First light at the **VLT** in 2012

Huge quantity of Hyperspectral data

(300 × 300 × 3464)
Adapted Redundant Dictionary

- Designed for the astrophysical characteristics of the spectra to be observed by MUSE 4.
- Composed by three sub-dictionaries:

 - R^ℓ = Spectral Lines \rightarrow Discrete splines of different widths;
 - R^b = Spectral Breaks \rightarrow Heaviside step functions;
 - R^c = Continuous Spectra \rightarrow Low frequencies sine functions.

$L = 22560$ atoms, $N = 3463$ spectral channels.

Adapted Redundant Dictionary

- Designed for the astrophysical characteristics of the spectra to be observed by MUSE\(^4\).
- Composed by three *sub-dictionaries*:

 \[R = [R^\ell, R^b, R^c] \]

 - \(R^\ell \) = Spectral Lines → Discrete splines of different widths;
 - \(R^b \) = Spectral Breaks → Heaviside step functions;
 - \(R^c \) = Continuous Spectra → Low frequencies sine functions.

\[L = 22560 \text{ atoms}, \quad N = 3463 \text{ spectral channels}. \]

Adapted Redundant Dictionary

- Designed for the astrophysical characteristics of the spectra to be observed by MUSE \(^4\).
- Composed by three *sub-dictionaries*:

\[
R = [R^\ell, R^b, R^c]
\]

- \(R^\ell\) = Spectral Lines \(\rightarrow\) Discrete splines of different widths;
- \(R^b\) = Spectral Breaks \(\rightarrow\) Heaviside step functions;
- \(R^c\) = Continuous Spectra \(\rightarrow\) Low frequencies sine functions.

\(L = 22560\) atoms , \(N = 3463\) spectral channels.

Adapted Redundant Dictionary

- Designed for the astrophysical characteristics of the spectra to be observed by MUSE4.
- Composed by three sub-dictionaries:

\[
R = [R^\ell, R^b, R^c]
\]

- \(R^\ell\) = Spectral Lines \(\rightarrow\) Discrete splines of different widths;
- \(R^b\) = Spectral Breaks \(\rightarrow\) Heaviside step functions;
- \(R^c\) = Continuous Spectra \(\rightarrow\) Low frequencies sine functions.

\(L = 22560\) atoms , \(N = 3463\) spectral channels.

Adapted Redundant Dictionary

- Designed for the astrophysical characteristics of the spectra to be observed by MUSE\(^4\).
- Composed by three *sub-dictionaries*:

\[
R = [R^\ell, R^b, R^c]
\]

- \(R^\ell\) = Spectral Lines → Discrete splines of different widths;
- \(R^b\) = Spectral Breaks → Heaviside step functions;
- \(R^c\) = Continuous Spectra → Low frequencies sine functions.

\(L = 22560\) atoms , \(N = 3463\) spectral channels.

Adapted Redundant Dictionary

- Designed for the astrophysical characteristics of the spectra to be observed by MUSE\(^4\).
- Composed by three *sub-dictionaries*:

\[
R = [R^\ell, R^b, R^c]
\]

- \(R^\ell\) = Spectral Lines \(\rightarrow\) Discrete splines of different widths;
- \(R^b\) = Spectral Breaks \(\rightarrow\) Heaviside step functions;
- \(R^c\) = Continuous Spectra \(\rightarrow\) Low frequencies sine functions.

\(L = 22560\) atoms , \(N = 3463\) spectral channels.

MUSE Data Model

MUSE data model:
\[H_1 : y = HR\alpha + \epsilon, \quad \epsilon \sim N(0, \Sigma) \]

- Considering weighted data:
 - \(x = \Sigma^{-\frac{1}{2}}y \);
 - \(D_{\Sigma} = \Sigma^{-\frac{1}{2}}HR \rightarrow D = D_{\Sigma}N_{D_{\Sigma}}^{-1} \);
 - \(\theta = N_{D_{\Sigma}}\alpha \);

Equivalent model:
\[H_1 : x = D\theta + w, \quad w \sim N(0, I) \]

- \(H \): Matrix form of the LSF (N×N);
- \(R \): Redundant dictionary (N×L, L>N);
- \(\alpha \): Sparse synthesis coefficients vector.

Tests implementation at \(\gamma = 0 \):
\(P_{FA} \) fixed by \(\eta \).

Correspondence \(\eta \leftrightarrow P_{FA} \) evaluated numerically.
MUSE Data Model

MUSE data model:
\[\mathcal{H}_1 : y = HR\alpha + \epsilon, \epsilon \sim \mathcal{N}(0, \Sigma) \]

- Considering weighted data:
 - \[x = \Sigma^{-\frac{1}{2}} y ; \]
 - \[D_\Sigma = \Sigma^{-\frac{1}{2}} HR \rightarrow D = D_\Sigma N_{D_\Sigma}^{-1} ; \]
 - \[\theta = N_{D_\Sigma} \alpha ; \]

Equivalent model:
\[\mathcal{H}_1 : x = D\theta + w, \ w \sim \mathcal{N}(0, I) \]

Tests implementation at \(\gamma = 0 \):
\(P_{FA} \) fixed by \(\eta \).
Correspondence \(\eta \leftrightarrow P_{FA} \) evaluated numerically.

- \(H \): Matrix form of the LSF (N\times N);
- \(R \): Redundant dictionary (N\times L, L>N);
- \(\alpha \): Sparse synthesis coefficients vector.
MUSE Data Model

\[
\mathcal{H}_1 : y = HR\alpha + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \Sigma)
\]

- Considering weighted data:
 - \(x = \Sigma^{-\frac{1}{2}}y \);
 - \(D_\Sigma = \Sigma^{-\frac{1}{2}}HR \rightarrow D = D_\Sigma N_{D_\Sigma}^{-1} \);
 - \(\theta = N_{D_\Sigma} \alpha \);

Equivalent model:

\[
\mathcal{H}_1 : x = D\theta + w, \quad w \sim \mathcal{N}(0, I)
\]

- Tests implementation at \(\gamma = 0 \):
 - \(P_{FA} \) fixed by \(\eta \).
 - Correspondence \(\eta \leftrightarrow P_{FA} \) evaluated numerically.
MUSE Cube \((14 \times 10 \times 2048)\);

- \(P_{FA_0} = 0.01\) for both tests;
- GLR : 10 detections;
- PDR/LRMAP : 22 detections.

For same \(P_{FA}\), increased \(P_{DET}\) for PDR/LRMAP on MUSE data thanks to the adapted redundant dictionary and the injection of the MAP in the tests.
Detection comparison on a simulated MUSE sub-cube

- MUSE Cube \((14 \times 10 \times 2048)\);
- \(P_{FA_0} = 0.01\) for both tests;
- GLR: 10 detections;
- PDR/LRMAP: 22 detections.

\[\downarrow\]

For same \(P_{FA}\), increased \(P_{DET}\) for PDR/LRMAP on MUSE data thanks to the adapted redundant dictionary and the injection of the MAP in the tests.
Detection comparison on a simulated MUSE sub-cube

- MUSE Cube \((14 \times 10 \times 2048)\);
- \(P_{FA_0} = 0.01\) for both tests;
- GLR : 10 detections;
- PDR/LRMAP : 22 detections.

\[\downarrow\]

For same \(P_{FA}\), increased \(P_{DET}\) for PDR/LRMAP on MUSE data thanks to the adapted redundant dictionary and the injection of the MAP in the tests.
Exploiting Spatial Dependencies between the spectra

Idea: *Cascade of two detection tests*

- After a *first detection round* using PDR/LRMAP test we are left with:
 - Detected
 - Not Detected

- We define the *contour*: set of non-detected pixels but contiguous to detected ones

- We run a *second detection round* on each pixel of the contour, taking into account spatial dependencies between contiguous spectra of the hyperspectral sub-cube.

We refer to this second test as the **LR-MPβ** test.

Fig.: MUSE sub-cube (14×10×2048).
Exploiting Spatial Dependencies between the spectra

Idea: *Cascade of two detection tests*

- After a *first detection round* using PDR/LRMAP test we are left with:

 ![Detected Not Detected](image)

 - **Detected**
 - **Not Detected**

- We define the *contour*: set of non-detected pixels but contiguous to detected ones

 ![Contour](image)

- We run a *second detection round* on each pixel of the contour, taking into account spatial dependencies between contiguous spectra of the hyperspectral sub-cube.

We refer to this second test as the **LR-MPβ** test.

Fig.: MUSE sub-cube (14×10×2048).
Exploiting Spatial Dependencies between the spectra

Idea: *Cascade of two detection tests*

- After a *first detection round* using PDR/LRMAP test we are left with:

 - Detected
 - Not Detected

- We define the *contour*: set of non-detected pixels but contiguous to detected ones

- We run a *second detection round* on each pixel of the contour, taking into account spatial dependencies between contiguous spectra of the hyperspectral sub-cube.

We refer to this second test as the **LR-MP** test.

Fig.: MUSE sub-cube (14×10×2048).

Fig. shows the MUSE sub-cube with a detected region in green and a contour in brown.
Exploiting Spatial Dependencies between the spectra

Idea: Cascade of two detection tests

- After a first detection round using PDR/LRMAP test we are left with:
 - Detected
 - Not Detected

- We define the contour: set of non-detected pixels but contiguous to detected ones

- We run a second detection round on each pixel of the contour, taking into account spatial dependencies between contiguous spectra of the hyperspectral sub-cube.

We refer to this second test as the LR-MP\(\beta\) test.

Fig. : MUSE sub-cube (14×10×2048).
LR-MP β Test

- We define \textbf{Faint Contour Spectrum} x_f (blue cross)
 \begin{itemize}
 \item → \textbf{Bright Detected Spectrum} x_b (green cross)
 \end{itemize}

 where x_f and x_b are contiguous spectra in the cube.

- Under H_1, x_f is modeled as: $x_f = \hat{x}_f + w$ where

 \[
 \hat{x}_f = \hat{\beta}_{ML} D \hat{\theta}(x_b),
 \]

 with

 - $\hat{\beta}_{ML}$: amplitude coefficient obtained by ML estimate;
 - $\hat{\theta}(x_b)$: bright spectrum parameters vector computed by Matching Pursuit.

 \[
 \text{LR} - \text{MP}\beta = \frac{p(x_f; \hat{\beta}, \hat{\theta}_b)}{p(x_f; 0)} \frac{H_1}{H_0} \xi
 \]
LR-MP β Test

- We define → **Faint Contour Spectrum** x_f (blue cross)

 → **Bright Detected Spectrum** x_b (green cross)

 where x_f and x_b are contiguous spectra in the cube.

- Under \mathcal{H}_1, x_f is modeled as: $x_f = \hat{x}_f + w$ where

 $$
 \hat{x}_f = \hat{\beta}_{ML} D \hat{\theta}(x_b),
 $$

 with

 - $\hat{\beta}_{ML}$: amplitude coefficient obtained by ML estimate;
 - $\hat{\theta}(x_b)$: bright spectrum parameters vector computed by Matching Pursuit.

$$
\text{LR - MP}_\beta = \frac{p(x_f; \hat{\beta}, \hat{\theta}_b)}{p(x_f; 0)} \frac{\mathbb{H}_1}{\mathbb{H}_0} \xi
$$

Fig. : MUSE sub-cube
LR-MP β Test

- We define → **Faint Contour Spectrum** x_f (blue cross)

 → **Bright Detected Spectrum** x_b (green cross)

 where x_f and x_b are contiguous spectra in the cube.

- Under H_1, x_f is modeled as: $x_f = \hat{x}_f + w$ where

 \[
 \hat{x}_f = \hat{\beta}_{\text{ML}} D \hat{\theta}(x_b),
 \]

 with

 - $\hat{\beta}_{\text{ML}}$: amplitude coefficient obtained by ML estimate;
 - $\hat{\theta}(x_b)$: bright spectrum parameters vector computed by Matching Pursuit.

 \[
 LR - MP \beta = \frac{p(x_f; \hat{\beta}, \hat{\theta}_b)}{p(x_f; 0)} \xrightarrow{H_1}{H_0} \xi
 \]

 Fig. : MUSE sub-cube
LR-MPβ Test

- We define → **Faint Contour Spectrum x_f** (blue cross)

 → **Bright Detected Spectrum x_b** (green cross)

 where x_f and x_b are contiguous spectra in the cube.

- Under H_1, x_f is modeled as: $x_f = \hat{x}_f + w$ where

 $$\hat{x}_f = \hat{\beta}_{ML} D \hat{\theta}(x_b),$$

 with

 - $\hat{\beta}_{ML}$: amplitude coefficient obtained by ML estimate;
 - $\hat{\theta}(x_b)$: bright spectrum parameters vector computed by Matching Pursuit.

 $$LR - MP\beta = \frac{p(x_f; \hat{\beta}, \hat{\theta}_b)}{p(x_f; 0)} \begin{cases} \frac{H_1}{H_0} \xi \\ \frac{H_0}{H_1} \xi \end{cases}$$
LR-MP β Test

- We define → **Faint Contour Spectrum** x_f
 (blue cross)

→ **Bright Detected Spectrum** x_b
 (green cross)

where x_f and x_b are contiguous spectra in the cube.

- Under H_1, x_f is modeled as: $x_f = \hat{x}_f + w$ where

$$\hat{x}_f = \hat{\beta}_{ML} D\hat{\theta}(x_b),$$

with

- $\hat{\beta}_{ML}$: amplitude coefficient obtained by ML estimate;
- $\hat{\theta}(x_b)$: bright spectrum parameters vector computed by Matching Pursuit.

$$LR - MP\beta = \frac{p(x_f; \hat{\beta}, \hat{\theta}_b)}{p(x_f; 0)} \overset{H_1}{\gtrless} \xi$$
Results on a MUSE sub-cube

- **Improved detection performances for the PDR/LRMAP + LR-MPβ test.**

 - **PDR/LRMAP**: 22 detections;
 - **PDR/LRMAP + LR-MPβ**: 34 detections.

- **The additional 12 detected spectra are true detections.**
P_{FA} maps

- P_{FA} of the cascade of the two tests:
 for one spectrum x_f (contiguous to one bright spectrum x_b),

$$P_{FA}^{2\text{tests}}(x_f) = P_{FA0}(\eta) + [1 - P_{FA0}(\eta)]P_{DET0}(x_b, \eta)P_{FA}(x_b, \xi).$$

- The P_{FA} increases with respect to the case where only one test is performed but, in any case

$$P_{FA}^{2\text{tests}} \leq 2P_{FA0}.$$

- Simulation results:
 - $P_{FA}^{1\text{test}} = 0.01$
 - $0.008 < P_{FA}^{2\text{test}} < 0.023$
 - mean $P_{FA}^{2\text{test}} = 0.014$
\(P_{FA} \) maps

- \(P_{FA} \) of the cascade of the two tests:
 for one spectrum \(x_f \) (contiguous to one bright spectrum \(x_b \)),

\[
P_{FA}^{2\text{tests}}(x_f) = P_{FA0}(\eta) + \left[1 - P_{FA0}(\eta)\right]P_{DET0}(x_b, \eta)P_{FA}(x_b, \xi).
\]

- The \(P_{FA} \) increases with respect to the case where only one test is performed **but**, in any case

\[
P_{FA}^{2\text{tests}} \leq 2P_{FA0}.
\]

Simulation results:
- \(P_{FA}^{1\text{test}} = 0.01 \)
- \(0.008 < P_{FA}^{2\text{test}} < 0.023 \)
- mean \(P_{FA}^{2\text{test}} = 0.014 \)
P_{FA} maps

- P_{FA} of the cascade of the two tests:
 for one spectrum x_f (contiguous to one bright spectrum x_b),

$$P_{FA}^{2\text{tests}}(x_f) = P_{FA0}(\eta) + [1 - P_{FA0}(\eta)]P_{DET0}(x_b, \eta)P_{FA}(x_b, \xi).$$

- The P_{FA} increases with respect to the case where only one test is performed but, in any case

$$P_{FA}^{2\text{tests}} \leq 2P_{FA0}. $$

Simulation results:
- $P_{FA}^{1\text{test}} = 0.01$
- $0.008 < P_{FA}^{2\text{test}} < 0.023$
- mean $P_{FA}^{2\text{test}} = 0.014$
Conclusions

Two new MAP-based tests for sparse signal detection were considered:

- the PDR test;
- the LRMAP test.

These detection tests were applied to astrophysical hyperspectral data.

- The tests were set in order to take advantage of a redundant dictionary and instrumental specificities, while keeping the processing complexity low.

- We proposed a new detection strategy based on the exploitation of the spatial dependencies existing between the spectra of the considered hyperspectral data.

- We proposed an analysis of the resulting global FA-rate through the use of FA-maps.

Perspectives

- Aggregation of the detected spectra in “objects” through unsupervised spatial-spectral clustering algorithms.

- Injection of others “thresholding” priors than Laplacian.
Two new MAP-based tests for sparse signal detection were considered:
- the PDR test;
- the LRMAP test.

These detection tests were applied to astrophysical hyperspectral data.

- The tests were set in order to take advantage of a redundant dictionary and instrumental specificities, while keeping the processing complexity low.

- We proposed a new detection strategy based on the exploitation of the spatial dependencies existing between the spectra of the considered hyperspectral data.

- We proposed an analysis of the resulting global FA-rate through the use of FA-maps.

Perspectives

- Aggregation of the detected spectra in “objects” through unsupervised spatial-spectral clustering algorithms.

- Injection of others “thresholding” priors than Laplacian.
Conclusions

Two new MAP-based tests for sparse signal detection were considered:

- the PDR test;
- the LRMAP test.

These detection tests were applied to astrophysical hyperspectral data.

- The tests were set in order to take advantage of a redundant dictionary and instrumental specificities, while keeping the processing complexity low.

- We proposed a new detection strategy based on the exploitation of the spatial dependencies existing between the spectra of the considered hyperspectral data.

- We proposed an analysis of the resulting global FA-rate through the use of FA-maps.

Perspectives

- Aggregation of the detected spectra in “objects” through unsupervised spatial-spectral clustering algorithms.

- Injection of others “thresholding” priors than Laplacian.
Conclusions

Two new MAP-based tests for sparse signal detection were considered:
- the PDR test;
- the LRMAP test.

These detection tests were applied to astrophysical hyperspectral data.

- The tests were set in order to take advantage of a redundant dictionary and instrumental specificities, while keeping the processing complexity low.
- We proposed a new detection strategy based on the exploitation of the spatial dependencies existing between the spectra of the considered hyperspectral data.
- We proposed an analysis of the resulting global FA-rate through the use of FA-maps.

Perspectives

- Aggregation of the detected spectra in "objects" through unsupervised spatial-spectral clustering algorithms.
- Injection of others "thresholding" priors than Laplacian.
Conclusions

Two new MAP-based tests for sparse signal detection were considered:
- the PDR test;
- the LRMAP test.

These detection tests were applied to astrophysical hyperspectral data

- The tests were set in order to take advantage of a redundant dictionary and instrumental specificities, while keeping the processing complexity low.
- We proposed a new detection strategy based on the exploitation of the spatial dependencies existing between the spectra of the considered hyperspectral data.
- We proposed an analysis of the resulting global FA-rate through the use of FA-maps.

Perspectives

- Aggregation of the detected spectra in “objects” through unsupervised spatial-spectral clustering algorithms.
- Injection of others “thresholding” priors than Laplacian.
Conclusions

Two new MAP-based tests for sparse signal detection were considered:
- the PDR test;
- the LRMAP test.

These detection tests were applied to astrophysical hyperspectral data.

- The tests were set in order to take advantage of a redundant dictionary and instrumental specificities, while keeping the processing complexity low.
- We proposed a new detection strategy based on the exploitation of the spatial dependencies existing between the spectra of the considered hyperspectral data.
- We proposed an analysis of the resulting global FA-rate through the use of FA-maps.

Perspectives

- Aggregation of the detected spectra in “objects” through unsupervised spatial-spectral clustering algorithms.
- Injection of others “thresholding” priors than Laplacian.
Thank You.
Results on a single MUSE spectrum

Spectrum considered:

- \(N = 2048 \rightarrow \# \) Wavelengths considered.
- \(\text{SNR} = 10 \log_{10} \frac{\|s\|^2}{\|\epsilon\|^2} = -19.3dB. \)

a) ROC curves of the tests.

b) Performances at variable SNR:
 - \(P_{FA_0} = 0.01 \) fixed (\(\eta = 4.72 \)).
 - GLR reduced to an ”Energy Detector”.
 - Better performances PDR/LRMAP vs GLR.
Expression of the P_{FA} considering the 8 neighbors of a given spectrum:

$$P_{FA_{TOT}} = P_{FA_0} + (1 - P_{FA_0}) \times \frac{1}{8} \sum_{i=1}^{8} P_{DET_0}(x_{b_i}) P_{FA}(\hat{x}_{b_i}; \xi)$$