High quality CMB map estimation

J. Bobin, J. L. Starck and F. Sureau

CEA - Service d’Astrophysique, France
After a series of successful surveys such as COBE or WMAP:

- The CMB is fundamental to study the dawn of our universe!

- PLANCK provides full-sky data in 9 channels in the range 30GHz - 857GHz

- High resolution data of (up to 5 arcmin)

Will be the reference full-sky data in the next decades for CMB studies!

Raising various image processing problems...
CMB data analysis

The importance of Source Separation
CMB data analysis

The importance of Source Separation
The importance of Source Separation

Extra foreground are superimposed with the CMB !!!
Point sources, galactic foregrounds, ... etc
Standard approaches amount to model each observation as a linear mixture of elementary components (i.e. CMB, SZ, Synchrotron, Free-Free, Dust ...) :

\[\forall i; x_i = \sum_j a_{ij} s_j + n_j \]

Which can be recast as:

\[X = AS + N \]
CMB data analysis

Separate the wheat and the chaff!

Standard approaches amount to model each observation as a linear mixture of elementary components (i.e. CMB, SZ, Synchrotron, Free-Free, Dust ...):

\[\forall i; \ x_i = \sum_j a_{ij} s_j + n_j \]

Which can be recast as:

\[X = AS + N \]

The objective is to estimate both A and S simultaneously!!
This inverse problem is classically known as Blind Source Separation (BSS)

\[\mathbf{X} = \mathbf{A}\mathbf{S} + \mathbf{N} \]

Due to its particular structure (e.g. bilinearity ...), BSS is an ill-posed problem!

Standard methods mainly differ in the way they try to differentiate between the sources S. State-of-the-art methods in astrophysics include:

- **SMICA**: second-order statistics in the sph. harmonics space (rely on the differences of the components’ power spectra)
- **CCA**: higher-order statistics to enforce independence (ICA)
- **GMCA**: sparsity of the components in wavelets

Other approaches include Internal Linear Combination (ILC), parametric methods template fitting.
This inverse problem is classically known as Blind Source Separation (BSS)

\[X = AS + N \]

Due to its particular structure \((e.g.\, \text{bilinearity} \ldots)\), BSS is an ill-posed problem!

Standard methods mainly differ in the way they try to differentiate between the sources \(S\). State-of-the-art methods in astrophysics include:

- **SMICA**: second-order statistics in the sph. harmonics space (rely on the differences of the components’ power spectra)
- **CCA**: higher-order statistics to enforce independence (ICA)
- **GMCA**: sparsity of the components in wavelets

Other approaches include Internal Linear Combination (ILC), parametric methods template fitting.
Generalized Morphological Component Analysis (GMCA) assumes that the sparsity patterns of the sought after components in a fixed space (e.g. wavelets) is somewhat different.
Generalized Morphological Component Analysis (GMCA) assumes that the sparsity patterns of the sought after components in a fixed space (e.g. wavelets) is somewhat different.

Finding the best parameters (A,S) so that the resulting components are the sparsest should provide an efficient separation process!
Generalized Morphological Component Analysis (GMCA) assumes that the sparsity patterns of the sought after components in a fixed space (e.g. wavelets) is somewhat different.

Finding the best parameters \((A,S)\) so that the resulting components are the sparsest should provide an efficient separation process!

More formally ...

\[
\{ A, S \} = \text{Argmin}_{A,S} \sum_{j} \lambda_j \| s_j W \|_1 + \| X - AS \|_{F,\Sigma}^2
\]
Several important components can be well approximated by a rank-1 contribution:

- CMB, SZ and Free-Free emission: their electromagnetic spectrum is assumed to be known \((i.e.\ the\ related\ columns\ of\ A\ are\ known\ and\ fixed)\)

- Synchrotron emission: rank-1 assumption / its electromagnetic spectrum is a power law with an unknown spectral index \((which\ can\ be\ estimated\ online\ within\ GMCA)\)
Several important components can be well approximated by a rank-1 contribution:

- CMB, SZ and Free-Free emission: their electromagnetic spectrum is assumed to be known (i.e. the related columns of A are known and fixed)

- Synchrotron emission: rank-1 assumption / its electromagnetic spectrum is a power law with an unknown spectral index (which can be estimated online within GMCA)

But important foreground emissions can’t be:

- Dust emissions: simple model involve two cold/hot modified black-body emissions with spatially varying parameters

- Point sources have their own spectrum ...
Several important components can be well approximated by a rank-1 contribution:

- CMB, SZ and Free-Free emission: their electromagnetic spectrum is assumed to be known (i.e. the related columns of A are known and fixed)

- Synchrotron emission: rank-1 assumption / its electromagnetic spectrum is a power law with an unknown spectral index (which can be estimated online within GMCA)

But important foreground emissions can’t be:

- Dust emissions: simple model involve two cold/hot modified black-body emissions with spatially varying parameters

- Point sources have their own spectrum ...

A single mixing matrix: not enough degrees of freedom! Mixtures vary spatially
Beyond GMCA

Let’s observe the observations ...

Observation
Beyond GMCA

Let’s observe the observations ...

Observation

1 - The large of structures of some components (Synchrotron and Dust emissions to only name two) can be modeled accurately by global rank-1 contribution.
Beyond GMCA

Let’s observe the observations ...

Observation

1 - The large of structures of some components (Synchrotron and Dust emissions to only name two) can be modeled accurately by global rank-1 contribution.

2 - Variations of the spectral behavior of these components is likely to vary at smaller scales.
Beyond GMCA

Local Multiscale mixture model

Local Multiscale Mixture Model

\[X_k[p] = \sum_{j=1}^{n} a^j_k[p] s_{j,k}[p] + N_k[p] \]
Classically, we apply GMCA at each patch and each scale:

$$\min_{A_k[p], S_k[p]} \sum_j \lambda_j \| s_{j,k}[p] \|_1 + \| X_k[p] - A_k[p]S_k[p] \|_F^2, \Sigma_k[p]$$
Classically, we apply GMCA at each patch and each scale:

$$\min_{A_k[p], S_k[p]} \sum_j \lambda_j \| s_{j,k}[p] \|_1 + \| X_k[p] - A_k[p] S_k[p] \|_{F, \Sigma_k[p]}^2$$

Which patch size?
Classically, we apply GMCA at each patch and each scale:

$$\min_{A_k[p], S_k[p]} \sum_j \lambda_j \|s_{j,k}[p]\|_1 + \|X_k[p] - A_k[p]S_k[p]\|_F, \Sigma_k[p]$$

The idea is designing a **multichannel quadtree decomposition**
Classically, we apply GMCA at each patch and each scale:

\[
\min_{A_k[p], S_k[p]} \sum_j \lambda_j \|s_{j,k}[p]\|_1 + \|X_k[p] - A_k[p]S_k[p]\|_F^2, \Sigma_k[p]
\]

The idea is designing a multichannel quadtree decomposition.
Classically, we apply GMCA at each patch and each scale:

$$\min_{A_k[p], S_k[p]} \sum_j \lambda_j \| s_{j,k}[p] \|_1 + \| X_k[p] - A_k[p] S_k[p] \|_F^2, \Sigma_k[p]$$

The idea is designing a multichannel quadtree decomposition:

$$A_k^{(1)}$$

$$A_k^{(2)}$$
Classically, we apply GMCA at each patch and each scale:

$$\min_{A_k[p], S_k[p]} \sum_j \lambda_j \| s_{j,k}[p] \|_1 + \| X_k[p] - A_k[p] S_k[p] \|_F^2, \Sigma_k[p]$$

The idea is designing a multichannel quadtree decomposition.
Gathering up all the pieces ...
Gathering up all the pieces ...

At each location, we can choose the best local estimator !
Gathering up all the pieces ...

\[A_k^{(1)} \ldots A_k^{(s)} \]
L-GMCA

Gathering up all the pieces ...

From the decorrelation of CMB, noise and foregrounds:

\[\sigma_y[k, p]^2 = \sigma_x[k, p]^2 + \sigma_n[k, p]^2 + \sigma_f[k, p]^2 \]

- CMB
- Noise
- Residuals
Gathering up all the pieces ...

\[X_j[p] \]

\[\hat{A}_k[p] = \min_s \sigma_{y(s)}[k,p]^2 \]

From the decorrelation of CMB, noise and foregrounds:

\[\sigma_y[k,p]^2 = \sigma_x[k,p]^2 + \sigma_n[k,p]^2 + \sigma_f[k,p]^2 \]

CMB Noise Residuals

Choosing the mixing matrix that provides the CMB with the lowest variance!
Planck component extraction via L-GMCA:

1) Decompose the data into J wavelet scales

2) At each scale k, apply GMCA to compute

\[A_k^{(1)} [p] \rightarrow A_k^{(s)} [p] \]

3) At each scale and each patch, choose the “best” estimators

4) Reconstruct the CMB map via inverse wavelet transform
For the sake of evaluation, L-GMCA has been applied to simulated but realistic data (Leach et al. 2008)

Planck sky modeling: CMB, SZ, free-free, synchrotron and dust emission, spinning dust

Instrumental modeling: decorrelated but non-stationary gaussian noise, perfect isotropic gaussian beams
CMB map estimation

Input CMB map

-0.50 0.50
CMB map estimation

N-ILC

N-ILC
CMB map estimation

L-GMCA

L-GMCA
CMB map estimation

Residual at 5 arcmin

NILC

-0.060 0.060
CMB estimation

Power spectra
Foreground contamination

Cross-powspec residual/dust emission

ILC
NILC
GMCA
L−GMCA
Foreground contamination

cross-spectra

Cross-powspec residual/sz emission

ILC
NILC
GMCA
L-GMCA
Non-Gaussianity

Kurtosis per wavelet scale

- ILC
- NILC
- GMCA
- L-GMCA
CMB map estimation

Kurtosis - 1st wavelet scale

- ILC
- NILC
- GMCA
- L-GMCA

ADA7 - Cargèse - May 2012
Take-away messages

The local/multiscale mixture we studied along with sparsity yields clearly improvements:

- Lower foreground contamination
- Lower NG contamination

Still a lot to be explored:

- Accounting for astrophysical models (foregrounds)
- Towards a true full-sky estimation of the CMB map
- Extension to polarized data