A Global Strategy for Spectral Inversion from a Model Library

A.Bijaoui, A.Recio-Blanco, P.De Laverny, C.Ordenovic

University of Nice Sophia Antipolis, CNRS, OCA, UMR 7293 Lagrange
PURPOSE

• Software requirement for the analysis of the Gaia/RVS stellar spectra
• Statistical fitting from a model grid
• Specific algorithms
 – Conception, coding & tests
• Comparison on simulated data

A.Bijaoui, et al. *Parameter estimation from a model grid. Application to the Gaia RVS spectra*

Statistical Methodology 9(2012)55-62

➔ A strategy for fitting from model grids
The Global Strategy

• Pre-Processing → Normalized data
• Principal component decomposition
 – Number of components depends on the SNR
• The minimum distance in log(N) time
 – Balanced oblique decision tree
• Parameter refinement with a variant of the Gauss-Newton algorithm
• Bias removal with a Bayesian analysis
 – Take into account previous simulations
A Model Grid Example

• Gaia/RVS:
 – 971 pixels
 – 3 parameters
 – 1638 spectra

• Simulated observations:
 – Random interpolation on the grid
 – SNR: infinity, 100 et 10
The restored grid from 33 components
The noise and the components
PCA application: the results

- The reduction of the handled coefficients improves the efficiency
- The reduction of the CPU time is < to the reduction of the array length.
- The data compression allows the application to larger model grids
 - Component increase < Models increase
- Allows the application to larger spectra
 - Component increase < Pixel increase
- The biases increase ➔ Has to be reduced
Minimum search with a decision tree

- Minimum search needs N distances / observation
- How to reduce to $\log(N)$?
 - Dichotomic partition
 - kd-tree with the median
 - Balanced kd-tree
- What coordinate at each node?
 - Too many pixels / N
 - Pixel combination
- Balanced Oblique Decision Tree (BODT)
The first level decomposition

Level 1

Level 2

Node 2

Node 3
Recognition of a noisy model

selected models → minimum distance
DEGAS + Gauss-Newton

- Minimum distance with DEGAS
 - Variations due to the sampling
- Gauss-Newton iterative corrections
 - Local linear approximation
 - Need of the Jacobian J Model / parameters
 \[
 \delta \Theta = (J^T J)^{-1} J^T (O - S)
 \]
 - Threshold the too large corrections
- The best tested algorithm
Bias corrections with a Bayesian analysis

- The model grid is \(\{ S_n(\Theta_n), n \text{ in } (1,N) \text{ and } O \text{ is a noisy observation vector} \)
- The posterior PDF (DPDF) is \(p(\Theta|\hat{\Theta}) \)
- The dispersion PDF \(q(\hat{\Theta}|\Theta) \)
 - Determined by numerical experiments
 - Often used instead of the PPDF
 - \(\Theta_0 \) is got, not the true parameter \(\Theta_0 \)
- The quality is got from the DPDF \(p(\Theta|\hat{\Theta}_0) \)
 which is not identical to the PPDF \(q(\hat{\Theta}|\hat{\Theta}_0) \)
- The difference can be important in case of estimation biases
Bias corrections with a Bayesian analysis

- Application of the Bayes’ rule

\[p(\Theta | \hat{\Theta}_0) = \frac{q(\hat{\Theta}_0 | \Theta)P(\Theta)}{Q(\hat{\Theta}_0)} \quad Q(\hat{\Theta}_0) = \int q(\hat{\Theta}_0 | \Theta)P(\Theta)d\Theta \]

- The DPDF is approximated with Parzen’s windows

\[q(\Theta | \Theta) = \sum_{k=1,K} \sum_{n=1,N} K(\Theta - \Theta_n, a) W(\Theta - \hat{\Theta}_{nk}, S) \]

- For a uniform prior we get approximatively the posterior mathematical expectation (Nadaraya-Watson’s formula)

\[\overline{\Theta} = \frac{\sum_{n=1,N} \sum_{k=1,K} \Theta_{nk} W(\Theta - \hat{\Theta}_{nk}, S)}{\sum_{n=1,N} \sum_{k=1,K} W(\Theta - \hat{\Theta}_{nk}, S)} \]
Results

• The biases are removed !!
• Errors at SNR = 100 do not increased
• For SNR=10 the errors are reduced
 – Has to be deepened
• Slow procedure
 – Need at a lot of simulation vectors
 – Acceleration using a kd-tree or a Balanced Oblique Decision Tree
• The use of a post-estimation Bayesian analysis seems to be essential
Conclusion

• The association of (PCA)+(Decision Tree) + (Gauss-Newton) + (Bayesian post-reduction) is very efficient for fast model fitting

• The SPEGAM software
 – System for Parameter Estimation from Grid of Astrophysical Models
 – F90 partly translated in Java for many applications
 – Should be easy to be applied for new applications
 – Associated documentation in progress including
 • A handbook on model fitting from a model grid
 • A programmer guide
 • A program reference manual
 • A user Guide