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¥ Phase retrieval (PR) problems aim to recover a signal    from 
intensity measurements only

¥These quadratic measurements can be lifted up as linear 
measurements on the rank-one matrix

¥The PR problem can be formulated as the following minimization 
problem:

¥ The theory states that    can be recovered with high probability 
provided that    are unitary and uniformly distributed on the unit 
sphere and                      . 

¥ Interferometers provide sparse measurements of the Fourier 
Transform of the Brightness Distribution of the observed 
object (Complex Visibilities).

¥ At Optical wavelengths the Complex Visibilities cannot be 
directly measured due to atmospheric turbulences. The 
available data for image reconstruction in a setting with T 
telescopes are:

-  Power spectrum  data (debiased and calibrated):                 
 

T(T-1)/2 Fourier magnitude coe!cients are available.
-  Bispectrum  data:

Its phase, the phase closure, is the sum of three phases 
around a closed triangle of baselines. (T-1)(T-2)/2 
independent phase estimates are available.                  

¥ We have shown that the Optical Interferometric imaging problem can be formulated as a linear inverse problem and solved within the framework of convex optimization. 
¥ Future work should concentrate on comparing the proposed approach with state-of-the-art algorithms such as MiRA1, which relies on a non-linear-non-convex approach known to be sensitive to the initialization. 
¥ New ways to improve the computational efficiency of the algorithm have to be explored to be able to lift the problem to higher dimension.
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Optical Interferometry:
Probing signals through the magnitude of Fourier 
measurements and incomplete phase information

Conclusion and future work

Phase Retrieval

Formulating a Linear Inverse Problem:
Partial PR problem based on a 3D-tensor recovery
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Mask 3D-Fourier Transform

promoting low-rank

promoting sparsity

is the sum of the absolute value 
of all the elements of the tensor

denotes the nuclear norm

1Combettes et al, ÒProximal Splitting Methods in Signal ProcessingÓ, 
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Keck optical interferometer (Hawaii) 

B j 1 ,j 2 ,j 3 = öI (! j 1 ,j 2 ) áöI (! j 2 ,j 3 ) áöI (! j 3 ,j 1 )

ThiŽbaut et al., 2010, IEEE Signal Processing Magazine, 27, 97

¥ In this setting, we use Phase Retrieval  insights to recover the 
signal from Optical Interferometric magnitude measurements.

¥ In addition to power spectrum measurements , we have partial 
phase information , sparsity  and positivity  of the signal.

¥ Considering the 3D-tensor                        the following linear 
inverse problem can be formulated:

 

¥ We formulate the following nuclear norm and    -norm minimization 
problem for tensor recovery:

                                   .

¥ The algorithm that we use to solve it is Parallel Proximal Algorithm1

¥ To improve the quality of the reconstruction, we promote 
structured sparsity  and low rank of the solution by using a 
reweighted approach. A sequence of weighted versions of the 
problem above is solved using: 

- a weighted nuclear norm instead of the nuclear norm.
- a weighted   -norm instead of    -norm with the following 
weights at iteration t: 

                                                                                   .

y = A(X ) + nvector of measurements

obs. noise
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¥ Optical Interferometric imaging can 
be seen as a Partial Phase Retrieval 
Problem. {

min
X !" N ! N ! N

3!

i =1

||Ci (X )||# + ||X || 1

subject to: ||y ! A (X )||2 " !

Ci (X ) # 0, i = 1 , 2, 3

X $ 0

Candes et al., 2011,Communications on Pure and Applied Mathematics, to appear
 

1ThiŽbaut, 2008, Proc SPIE: Astronomical Telescopes and Instrumentation, 7013, 70131I
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original image

Þnal solution (9th iteration)
SNR=53 dB

First reconstruction (before 
reweighting process)

2nd iteration

3rd iteration 4th iteration

Reconstruction Quality and Partial Phase Information Importance
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Reconstruction quality for K=2 (N=16, 30dB noise)
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Phase Transition Diagram

Empirical probability of good 
reconstruction 

1.941.560.25 1

M = M p + M bTotal number of measurements

Power Spectrum meas.

Bispectrum meas.

Reconstruction quality for K=4 (N=16, 30dB noise)

¥ For k=2, we have good reconstruction quality starting at M/N=1.  
¥ For K=4 the bispectrum information improves the reconstruction quality.

Reweighting Process

Example of reconstruction for an 8x8 image with 30dB of noise and a sparsity level k=6 (10%)

¥The reweighting process is essential to promote structured sparsity in the solution.
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¥ We evaluate the performance of 
the algorithm with di"erent levels of 
sparsity in 4x4 synthetic images (no 
noise). 

¥ We take      power spectrum 
measurements and all the available 
Bispectrum data, corresponding to 
the sampled frequencies in a phase 
closure relationship.
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