A Novel Convex Optimization Approach for Optical Interferometric Imaging
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Optical Interferometry:

Probing signals through the magnitude of Fourier
measurements and incomplete phase information

¥Interferometers provide sparse measurements of the Fourier
Transform of the Brightness Distribution of the observed
object (Complex Visibllities).

¥At Optical wavelengths the Complex Visibilities cannot be
directly measured due to atmospheric turbulences. The
avallable data for Image reconstruction in a setting with T
telescopes are:

- Power spectrum data (debiased and calibrated):

Sjl,jz - ‘p(!jl,jz)‘z
T(T-1)/2 Fourier magnitude coelcients are available.
- Bispectrum data:

Bi.jsjs = M. aX!y,.) aXlsq)

Its phase, the phase closure, Is the sum of three phases
around a closed triangle of baselines. (T-1)(T-2)/2
iIndependent phase estimates are available.

¥ Optical Interferometric imaging can |
be seen as a Partial Phase Retrieval
Problem. 1

Keck optical interferometer (Hawaii)

\ThiZbaut et al., 2010, IEEE Signal Processing Magazine, 27, 97 j
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Phase Retrieval

¥Phase retrieval (PR) problems aim to recover a signal x from
intensity measurements only b = |(x,a;) [%,i = 1,2,..,M.

¥These guadratic measurements can be lifted up as linear
measurements on the rank-one matrix X = xx', b= A(xx").

¥The PR problem can be formulated as the following minimization
problem:
min

o mine XL

subject to ||[b!A (X)||o" 'and X # O.

¥The theory states tkat can be recovered with high probability
provided that @ are unitary and uniformly distributed on the unit
sphere and M ! Nlog(N).

Candes et al., 2011,Communications on Pure and Applied Mathematics, to appear
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Formulating a Linear Inverse Problem:

Partial PR problem based on a 3D-tensor recovery

¥In this setting, we use Phase Retrieval insights to recover the
signal from Optical Interferometric magnitude measurements.

¥|n addition to power spectrum measurements , we have partial
phase Iinformation , sparsity and positivity of the signal.

¥ Considering the 3D-tensor * = 2 ®x ® = the following linear
Inverse problem can be formulated:
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Mask 3D-Fourier Transform

A= T o

A (X)) = (i) () &P(k)

¥We formulate the following nuclear norm and 1 -norm minimization
problem for tensor recovery:

promoting |OW-I'ank/
P — : :
promoting sparsit

HC(X)H#-l_ ‘XHl \“é‘h is the sum of the absolute value

i=1 of all the elements of the tensor
subject to: ||[y!A (X)||o " !
GX)#0,1=1,2,3 GxX)! cN'N, [GX)] = ziji,-k  etc.
X$ 0. <

” é- ” denotes the nuclear norm

¥The algorithm that we use to solve it is Parallel Proximal Algorithm?

¥To improve the quality of the reconstruction, we promote
structured sparsity and low rank of the solution by using a
reweighted approach. A sequence of weighted versions of the
problem above Is solved using:

- a weighted nuclear norm instead of the nuclear norm.
- a weighted I;-norm instead of |1-norm with the following
weights at iteration t:
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NOISELESS SETTING

Phase Transition Diagram

Empirical probability of good
reconstruction

¥ We evaluate the performance of
the algorithm with di"erent levels of
L Sparsity in 4x4 synthetic images (no
noise).
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- 04 ¥ We take M ppower spectrum
measurements and all the available
Bispectrum data, corresponding to
the sampled frequencies in a phase
closure relationship.

Sparsity, K (N

Bispectrum meas.

M = M, + My

Total number of measurements

. M/N

Power Spectrum meas.
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NOISY SETTING
Reconstruction Quality and Partial Phase Information Importance

Reconstruction quality for K=2 (N=16, 30dB noise) Reconstruction quality for K=4 (N=16, 30dB noise)
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¥ For k=2, we have good reconstruction quality starting at M/N=1.
¥ For K=4 the bispectrum information improves the reconstruction quality.

Reweighting Process

Example of reconstruction for an 8x8 image with 30dB of noise and a sparsity level k=6 (10%)
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4th iteration

3rd iteration Pnal solution (9th iteration)

SNR=53 dB

\¥The reweighting process is essential to promote structured sparsity in the solution.
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Conclusion and future work

¥We have shown that the Optical Interferometric imaging problem can be formulated as a linear inverse problem and solved within the framework of convex optimization.
¥Future work should concentrate on comparing the proposed approach with state-of-the-art algorithms such as MiRA?, which relies on a non-linear-non-convex approach known to be sensitive to the initialization.
@éNew ways to improve the computational efficiency of the algorithm have to be explored to be able to lift the problem to higher dimension.

1ThiZbaut, 2008, Proc SPIE: Astronomical Telescopes and Instrumentation, 7013, 70131I
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